skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brijen Thananjeyan, Kirthevasan Kandasamy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study exploration in stochastic multi-armed bandits when we have access to a divisible resource that can be allocated in varying amounts to arm pulls. We focus in particular on the allocation of distributed computing resources, where we may obtain results faster by allocating more resources per pull, but might have reduced throughput due to nonlinear scaling. For example, in simulation-based scientific studies, an expensive simulation can be sped up by running it on multiple cores. This speed-up however, is partly offset by the communication among cores, which results in lower throughput than if fewer cores were allocated to run more trials in parallel. In this paper, we explore these trade-offs in two settings. First, in a fixed confidence setting, we need to find the best arm with a given target success probability as quickly as possible. We propose an algorithm which trades off between information accumulation and throughput and show that the time taken can be upper bounded by the solution of a dynamic program whose inputs are the gaps between the sub-optimal and optimal arms. We also prove a matching hardness result. Second, we present an algorithm for a fixed deadline setting, where we are given a time deadline and need to maximize the probability of finding the best arm. We corroborate our theoretical insights with simulation experiments that show that the algorithms consistently match or outperform baseline algorithms on a variety of problem instances. 
    more » « less